

Bi-Directional Semiconductor Solid State Relay

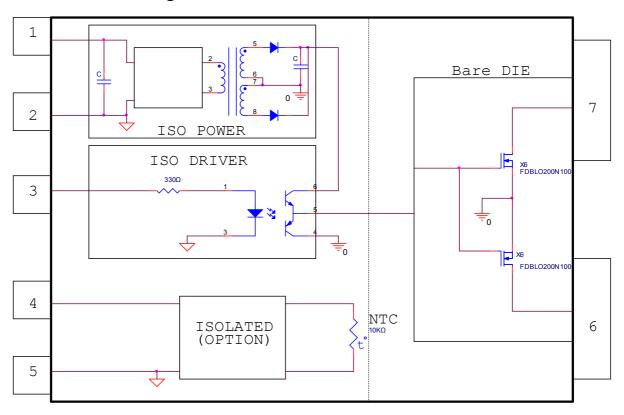
Abstract:

The new compact &cost-effective bi-directional pure type Solid State
Relay was designed with the ultra-low ON Resistance MOSFET for high current operation.

The SSR combines input to output isolated, support bi-directional load current, high inrush current, high switch life time functions, can be used for 48V micro-hygrid start/stop system, Battert energy storage system, UPS...

Product Highlights:

- ✓ Up to 250ADC continue current
- ✓ 70mm×60mm×18mm ultra-compact design for high power density
- ✓ > 100,000 full power switching lifetime
- ✓ Bi-directional current type, can be used for DC or AC application
- ✓ Without traditional mechanical switch bounce
- ✓ 12VDC input supply, input signal can be used for PWM control
- ✓ Up to 2500Vrms safe isolation voltage for to input to output, 1500Vms for input or base plate
- ✓ Short propagation delay time
- ✓ Wide operation temperature range:- 40° C \sim 85 $^{\circ}$ C


Targert Applications:

- → Micro-Hybrid Vehicle
- → High Frequency Power Supply
- → Battery Fomation

- → Photovoltaic
- → Energy Storage Systems
- → Battery Protection

Functional Bolck Diagram:

Pin1:VDD PIN2:PGND PIN3:VSGN PIN4:TEMP1 PIN5:TGND PIN6:PWR1 PIN7:PWR2

散熱基材(FR4) +Bare Die 散熱基材(ALN)

表一、各類材料散熱系數

Material	Conductivity(W/mK)			
FR4	0.2			
Alumina	17-27			
Aluminium Nitride	170-280			
Gold	315			
Silver	425			
Copper	398			

Source : UEC Inc

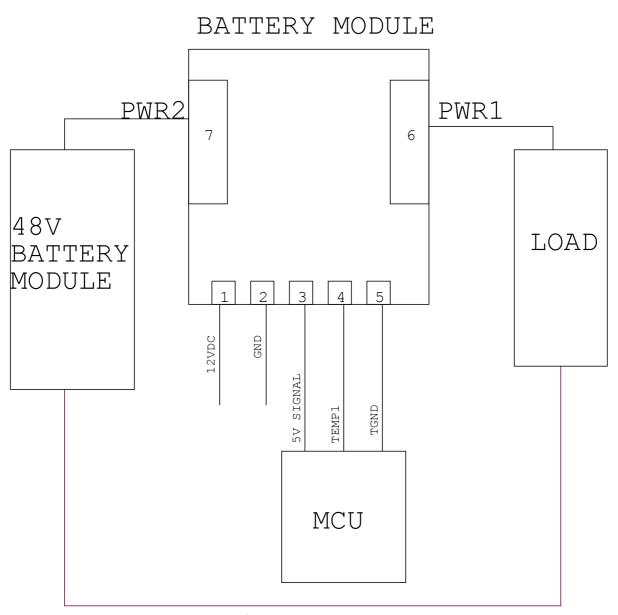
SSR-60V300A

www.aet.com.tw

Absolute Maximum Ratings:

Symbol	Parameter	Condition/Description	Win.	Тур.	Max.	Unit
$V_{ extsf{DD}}$	Input power supply voltage	V _{DD} ~GND	0		20	V
V_{RSGN}	Input signal max voltage	SGN~GND	0		6	V
I _{PWR}	Max output current	PWR1 to PWR2	-250		+250	Α
$V_{\sf PWR}$	Max output voltage	PWR1 to PWR2	-100		+100	V
P _{OP(MAX)}	Max continue output power				12000	W
f _(MAX)	Max switching frequency				1	Hz
V _{ISOI-O}	Insulation voltage	Input to Output, AC 50Hz, 60s			2500	V _{rms}
V _{ISOI-O}	Insulation voltage	In/Output to Base Plate, AC			1500	Vrms
		50Hz				
Topr	Operating temperature	No condensation allowable	-40		85	$^{\circ}\mathbb{C}$
T st	Storage temperature	No condensation allowable	-55		125	$^{\circ}\!\mathbb{C}$

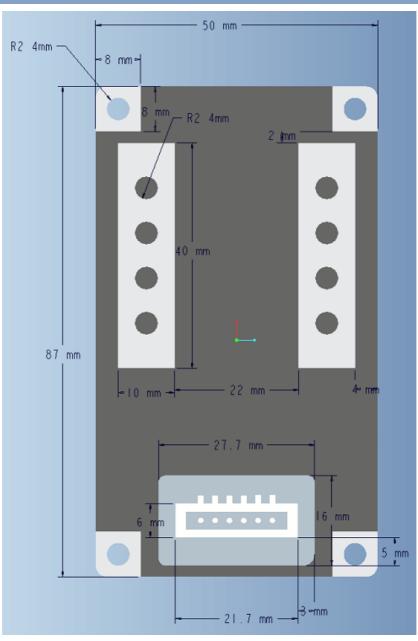
Recommend Electrical Characteristics: (T_A=25°C,V_{DD}=12V unless otherwise specified)


Symbol	Parameter	Condition/Description	Win.	Тур.	Max.	Unit
$V_{ extsf{DD}}$	Input power supply voltage	V _{DD} ~ GND, Recommended range	11.5	12	13	٧
I _{SGN+}	Logic ON input current	SGN~GND, Recommended range	10		20	mA
V_{SGN-}	Logic OFF input voltage	SGN~GND, Recommended range	-3		0.8	V
R _{temp}	NTC Parameter	Temp1~Tgnd	0		10	kΩ
DD	Input static current	Output signal Low		20		mA
DCPWR	Power output current	PWR1 ~ PWR2	-250		+250	Α
VDCPWR	Power output voltage	PWR1 ~ PWR2	-60	±48	+60	V
I _{Lk}	Leakage current	PWR1 ~ PWR2, off state			40	μА

Bi-Directional Relay

V _{DCON}	ON state voltage drop	Idcpwr=250A	0.15	0.25	V
PWD	Minimum input pulse width			TBD	ms
t DLH	Turn-on propagation delay	Input to Output		TBD	μS
t _{DHL}	Turn-off propagation delay	Input to Output		TBD	μS
tr	Input static current			TBD	μS
tf	Turn-on rise time			TBD	μS
Di/dtoff	Turn-off fall time	V _{PWR} = 48V,IDCPWR = 150A	4		A/μS
R _{th(J-C)}	Thermal resistance	Junction to base plate		TBD	°C/W

Typical Application:



- 1. It's recommended to connect a low ESL/ESR, > 47uF catacitor between $V_{DD} \sim GND$, and as close the RELAY as possible.
- 2. To prevent the noise, optimized the input signal loop and distance.
- 3. Optimized the driver output loop, for reducing the loop stray inductance Ls. But if in the inductance load application, when the voltage spike over than 100Vpead at switching off, please considering parallel a 0.1-0.68uF snubber capacitor between PWR1 and PWR2 terminal.
- 4. In the capacitance load application, please considering parallel the pre-charge circuit for LOAD charging. If not, please make sure that the inrush current no higher than 600A@1ms.

Mechanical Dimensions:(mm)

IMPORTANT NOTICE

Apollo Energy Technology CO., LTD. (AET) reserves the right to make changes to its products

or to discontinue any integrated circuit product or service without notice, and advises its

customers to obtain the latest version of relevant information to verify, before placing orders,

that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death,

personal injury, or severe property or environmental damage. AET integrated circuit products

are not designed, intended, authorized, or warranted to be suitable for use in life-support

applications, devices or systems or other critical applications. Use of AET products in such

applications is understood to be fully at the risk of the customer. In order to minimize risks

associated with the customer's applications, the customer should provide adequate design

and operating safeguards.

Sales

Apollo Energy Technology CO., LTD.

2F., No.5-11, Sanjun St., Shulin Dist.,

New Taipei City 238, Taiwan (R.O.C.)

TEL: +886-2-2689 3162

FAX: +886-2-2689 3166