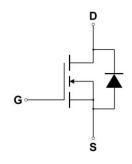

GENERAL DESCRIPTION

This advanced high voltage MOSFET is designed to withstand high energy in the avalanche mode and switch efficiently. This hew high energy device also offers a drain-to-source diode with fast recovery time. Designed for high voltage, high speed switching applications such as power supplies, converters, power motor controls and bridge circuits.


FEATURES

- SJ MOS
- Higher Current Rating
- ◆ Lower Rds(on)
- ◆ Lower Capacitances
- Lower Total Gate Charge

PIN CONFIGURATION

SYMBOL

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS

Rating		Symbol	Value	Unit	
Drain to Current — Continuous		I _D	4.2		
- Pulsed		I _{DM}	12.6	А	
Gate-to-Source Voltage — Continue		V _{GS} ±20		V	
Total Power Dissipation TO251/TO252		83.3			
TO-220			113.6	W	
TO-220 FP		Б	26.6		
Derate above 25°C TO251/TO252		P _D	0.67		
TO-220			0.91	W/°C	
TO-220FP			0.21		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	$^{\circ}\!\mathbb{C}$	
Single Pulse Drain-to-Source Avalanche Energy − T _J = 25°C		_	_		
$(V_{DD} = 100V, V_{GS} = 10V, I_L = 1.0A, L = 10mH, R_G = 25\Omega)$		E _{AS}	5	mJ	
Thermal Resistance — Junction to Case	TO251/TO252	θ_{JC}	1.5		
	TO-220		1.1		
	TO-220FP		4.7	°CW	
 Junction to Ambien 	t TO251/TO252	θ_{JA}	100		
	TO-220/ TO-220FP		62.5		
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds		TL	260	$^{\circ}\!\mathbb{C}$	

GPT04N65SX

POWER FIELD EFFECT TRANSISTOR

ORDERING INFORMATION

Part Number	TOP MARK	Part Number	Packing Method	Note
GPT04N65SXN251 (Note	GPT04N65SX	TO-251	Tube	
GPT04N65SXN252 (Note	GPT04N65SX	TO-252	Tube	
GPT04N65SXN252TR (Note	GPT04N65SX	TO-252	Tape and Reel	
GPT04N65SXN220 (Note	GPT04N65SX	TO-220	Tube	
GPT04N65SXN220FP (Note	GPT04N65SX	TO-220FP	Tube	

Note1: X: Suffix for Halogen Free and PB Free Product

ELECTRICAL CHARACTERISTICS

			GPT04N65S			
Characteristic		Symbol	Min	Тур	Max	Units
Drain-Source Breakdown Voltage		V	650			V
$(V_{GS} = 0 \text{ V}, I_{D} = 1\text{mA})$		V _{(BR)DSS}	030			V
Drain-Source Leakage Current	Drain-Source Leakage Current				1	uA
$(V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V})$	$(V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V})$					uA
Gate-Source Leakage Current-Forward		I _{GSSF}			100	nA
$(V_{GSF} = 20 \text{ V}, V_{DS} = 0 \text{ V})$		IGSSF			100	IIA
Gate-Source Leakage Current-Re	-Source Leakage Current-Reverse		 -		100	nA
$(V_{GSR} = -20 \text{ V}, V_{DS} = 0 \text{ V})$		I _{GSSR}			100	ш
Gate Threshold Voltage		$V_{GS(th)}$	2.5	3.5	4.5	V
$(V_{DS} = V_{GS}, I_D = 250 \mu A)$	$(V_{DS} = V_{GS}, I_D = 250 \mu A)$		2.0	0.0	1.0	, i
Static Drain-Source On-Resistance ($V_{GS} = 10 \text{ V}, I_D = 0.67 \text{ A}$) *		R _{DS(on)}			3.0	Ω
Input Capacitance	$(V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V},$	C _{iss}		1044		pF
Output Capacitance	f = 1.0 MHz	Coss		46		pF
Reverse Transfer Capacitance	1 – 1.0 Wil 12)	C _{rss}		12		pF
Turn-On Delay Time	$(V_{DD} = 325 \text{ V}, I_D = 2 \text{ A},$ $V_{GS} = 10 \text{ V},$ $R_G = 9.1\Omega) *$	t _{d(on)}		7		ns
Rise Time		t _r		21		ns
Turn-Off Delay Time		t _{d(off)}		14		ns
Fall Time		t _f		23.2		ns
Total Gate Charge	$(V_{DS} = 520 \text{ V}, I_{D} = 2 \text{ A}, V_{GS} = 10 \text{ V})^*$	Q_g		4.7		nC
Gate-Source Charge		Q_gs		2.07		nC
Gate-Drain Charge	VGS = 10 V)	Q_gd		1.22		nC
SOURCE-DRAIN DIODE CHARA	ACTERISTICS					
Forward On-Voltage(1)	$(I_S = 2 A, d_{IS}/d_t = 100A/\mu s)$	V_{SD}			1.5	V
Forward Turn-On Time		t _{on}		**		ns
Reverse Recovery Time	als/at - 100/v µs)	t _{rr}		150.2		ns

^{*} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%

^{**} Negligible, Dominated by circuit inductance

TYPICAL ELECTRICAL CHARACTERISTICS

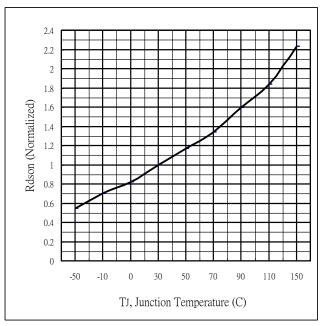


Fig 1. On-Resistance Variation with vs. Temperature

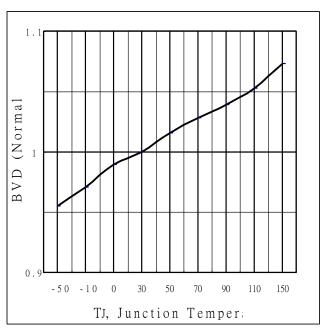


Fig.2 Breakdown Voltage Variation vs. Temperature

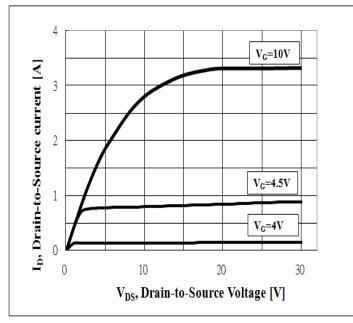


Fig 3. Typical Output Characteristics

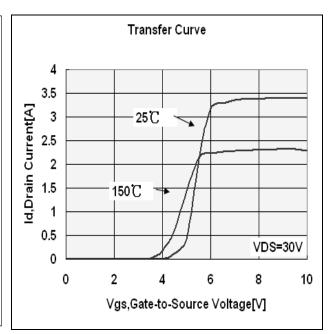


Fig 4. Typical Transfer Characteristics

GPT04N65SX

POWER FIELD EFFECT TRANSISTOR

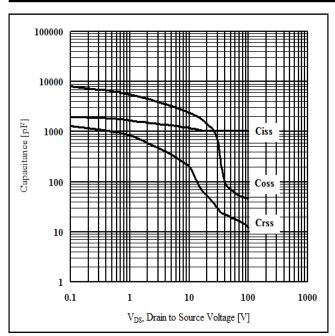


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

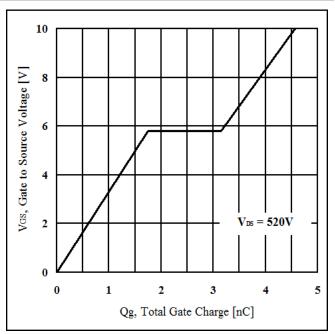


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

GPT04N65SX

POWER FIELD EFFECT TRANSISTOR

IMPORTANT NOTICE

Great Power Microelectronic Corporation (GP) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. GP integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of GP products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

虹冠電子工業股份有限公司 Champion Microelectronic Corporation Web:http://www.champion-micro.com/

深圳市冠顺微电子股份有限公司 Shenzhen Great Power Co., Ltd Web:http://www.greatpowermicro.com

臺灣	深土
新北市汐止區新台五路一段 96 號 21F	深土

21F., No. 96, Sec. 1, Sintai 5th Rd., Sijhih City, Taipei County 22102,

Taiwan, R.O.C.

TEL: +886-2-2696 3558 FAX: +886-2-2696 3559 深圳市福田区深南大道 7002 号财富广场 A 座 4V,

4V, Tower A, Fortune Plaza, No. 7002, Shennan Road, Futian District, Shenzhen City, China

PC: 518040

TEL: +86-755-83709176 FAX: +86-755-83709276